

FNE Entsorgungsdienste Freiberg GmbH

Hydrometallurgische Aufarbeitung von Schwarzmassen aus LFP-Batterien

Karin Jacob-Seifert

Geschäftsführerin

Daniel Schmidt und Yuan Wei

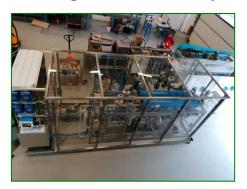
Aufarbeitung und Chemie10.10.2023

Einleitung

Kurzvorstellung FNE

Forschungsinstitut für NE-Metalle

- ✓ Gegründet 1949 als NE-Forschungseinrichtung in Freiberg
- ✓ Schwerpunkte: Aufbereitung Technologiemetalle und Sondermetalle
- √ 1990 Erweiterung zum Behandlungs- und Lagerzentrum für gefährliche Abfallstoffe
- ✓ 2000 Etablierung Geschäftsfeld Aufarbeitung für strategische Rohstoffe und PGM's aus Abfällen
- ✓ Ab 2008 wirtschaftliches Recycling von Seltenerdmetallen aus Leuchtstoffen und Produktionsabfällen
- ✓ Ab 2017 wirtschaftliches Recycling von Gd und Pt aus pharmazeutischen Rückständen
- ✓ Ab 2019 Forschungsprojekte zum Li-Batterie Recycling (Batterien & Akkumulatoren)
- ✓ Enge wissenschaftliche Kooperation mit der TU Bergakademie Freiberg



Einleitung

Aufbereitungstechniken am Standort Freiberg

- ✓ Hydrometallurgische Behandlungsanlagen
 Reaktoren für Synthesen und Aufschlüsse, Fällungen, Produktseparation etc.
- ✓ Thermische Behandlungsanlagen
 Ofentechnik für Oxidationen und Edelmetallgewinnung (u.a. Ag, Rh, Pd, Pt, Gd)
- ✓ Elektrochemische & Physikalische Behandlungsanlagen Membrantechnik, AOP-Anlage, Elektrolyse
- ✓ Begleitende Analytik (u.a. ICP-OES, RFA, Brenn- & Heizwertbestimmung)

Aufarbeitung von Lithium-Eisen-Phosphat-Batterien

SAB-Projekt: Start 2020; Einstieg FNE 2022 als Ersatz für SiC Processing

<u>Projektziel:</u> Ganzheitlicher Recyclingeinsatz für Lithium-Eisen-Phosphat-Akkumulatoren

- Sammlung und Zerlegung
- Mechanische Aufbereitung und Metallrückgewinnung

 Thermische und Hydrometallurgische Aufarbeitung Schwarzmassen

<u>Aufgabe FNE:</u> Verfahrensentwicklung zur Aufarbeitung von Lihaltigen Schwarzmassen

Gewinnung & Aufarbeitung von Schwarzmasse

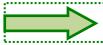
Herausforderungen Schwarzmasse

- Enthält Metallverunreinigungen, insbesondere Al und Cu
- Enthält gefährliche Lösungsmittel, Leitsalz (LiPF₆) und Binder Fluorhaltig!

Thermische Vorbehandlung effektiver als Wäsche mit Lösungsmitteln (polar & unpolar)

Thermische Vorbehandlung

Thermische Vorbehandlung


> Durchführung im Kammerofen

Temperatur [°C]	Gewichtsabnahme [%]	F-Gehalt Feststoff [Gew%]	F-Abreicherungsgrad [%]	
400	14,8	0,51	88,3	
700	22,4	0,049	99,0	
1.000	34,0	0,024	99,6	

- > 700°C: 99% des Fluors aus SM abgetrennt
- >700°C Zersetzung von anorganischem Graphit

Nach Kalzinierung Fluor nahezu vollständig (99 %) abgetrennt

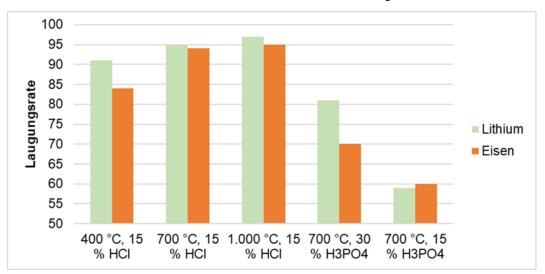
Thermische Vorbehandlung bei 700°C im Lufstrom

Zusammensetzung Schwarzmasse

Probe	Al [Gew%]	Cu [Gew%]	Fe [Gew%]	PO ₄ [Gew%]	Li [Gew%]	Summe Elemente [Gew%]	Summe Rest [Gew%]
Mischprobe	0,29	5,06	15,25	23,41	2,06	46,07	53,93
700°C	0,33	<mark>6,45</mark>	19,4	36,4	2,85	65,43	34,57

Vorteile Thermische Vorbehandlung

- ✓ Konzentrierung der Wertstoffe
 - Erhöhung Li-Gehalt auf 2,85 %; PO4-P-Gehalt auf 36,4 %
- ✓ Erhöhung des Arbeitsschutzes (HF-Bildung ausgeschlossen)
- ✓ Verringerung der aufzuarbeitenden Menge (-22%)
- ✓ Rest nach Kalzinierung : Anorganischer Graphit
- ➤ Hauptverunreinigung Kupfer (6,45%)



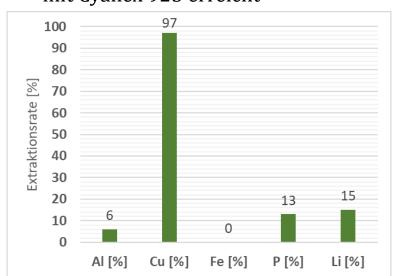
Nasschemische Aufarbeitung

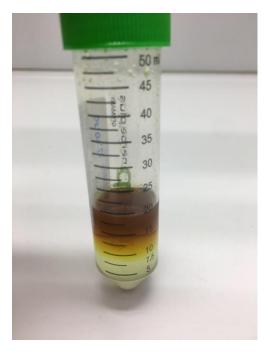
Säureaufschluss der kalzinierten Schwarzmasse

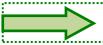
Einsatz von Salz- und Phosphorsäure untersucht

Graphithaltiger Laugungsrückstand nach Wäsche mit Hu =22.500 J/g
 (Schwarzmasse = 10.500 J/g)

>95 % Li-, P- & Fe-Laugungsrate mit 15%iger HCl erreicht Chlorarmer Rückstand mind. als Reduktionsmittel einsetzbar

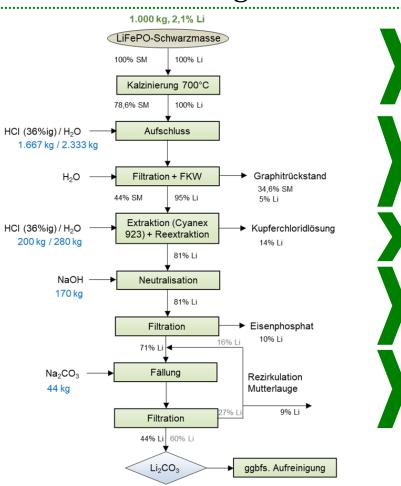





Nasschemische Aufarbeitung

Kupferabtrennung aus Laugungslösung

- Umfangreiches Screening von Ionenaustauschern und Extraktionsmitteln
- Beste Selektivität und Abreicherungsraten mit Cyanex 923 erreicht



97% Cu-Abtrennungsrate mit Cyanex 923 Extraktionsmittel erreicht

Entwicklung und Bilanzierung Gesamtverfahren

66 kg, 17,6% Li

Thermische Vorbehandlung

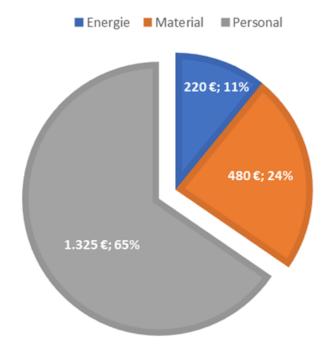
Aufschluss mit Filterkuchenwäsche

Kupferabtrennung mittels Flüssig/Flüssig-Extraktion

Neutralisation und Abtrennung Eisenphosphat

Fällung und Abtrennung Lithiumcarbonat

Gesamtlithiumausbeute 60%


Kostenaufstellung Gesamtverfahren

Gesamtkosten (Technikum FNE 100kg/Batch):

2.025 €/t Schwarzmasse

- Personaleinsatz mit höchstem Anteil
- ➤ Kostendeckungsgrad Produkt 65% (bei 20€/kg Lithiumcarbonat)

Material / Posten	Preis			
Trinkwasser	5 €/t			
Strom	0,35 €/kWh			
HCI (36%ig)	100 €/t			
NaOH	750 €/t			
Na ₂ CO ₃	600 €/t			
Cyanex 923	15.000 €/t			
Personal	35 €/h (interner Kalkulationssatz)			
Gas	0,10 €/kWh			

Aufarbeitung nur zu SPOT-Market-Preisen (bis 70€/kg Li₂CO₃) wirtschaftlich im Technikumsmaßstab umsetzbar

Ansprechpartner

Ansprechpartner:

Stammsitz in Freiberg FNE Entsorgungsdienste Freiberg GmbH Frau Karin Jacob-Seifert Schachtweg 6 D-09599 Freiberg Germany

Ansprechpartner:

Büro in Bitterfeld FNE Entsorgungsdienste Freiberg GmbH ChemiePark Bitterfeld Wolfen, Areal A Andresenstraße 1a, 06766 Bitterfeld-Wolfen Germany